Timothy Lipman, PhD

Headshot of Tim Lipman

Co-Director, TSRC

Research Affiliate, Lawrence Berkeley Nat'l Laboratory

telipman@berkeley.edu

510-642-4501

Timothy E. Lipman is an energy and environmental technology, economics, and policy researcher and lecturer with the University of California - Berkeley. He is serving as Co-Director for the campus' Transportation Sustainability Research Center (TSRC), based at the Institute of Transportation Studies, and also as Director of the Northern California Center for Alternative Transportation Fuels and Advanced Vehicle Technologies (NorthCAT -- see "northcat.org") effort. Tim's research focuses on electric-drive vehicles, fuel cell technology, combined heat and power systems, biofuels, renewable energy, and electricity and hydrogen energy systems infrastructure.

Lipman received his Ph.D. degree in Environmental Policy Analysis with the Graduate Group in Ecology at UC Davis (1999). He also has received an M.S. degree in the technology track of the Graduate Group in Transportation Technology and Policy, also at UC Davis (1998), and a B.A. from Stanford University (1990). His Ph.D. dissertation titled "Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework" received the University of California Transportation Center's 'Charlie Wootan' Ph.D. dissertation award for 1999. He is also a 2005 Climate Change Fellow with the Woods Institute at Stanford University, and he also received a 2004 Institute of Transportation Engineers service award, a 1998 NSF IGERT teaching fellowship, a 1997 University of California Transportation Center Dissertation Grant, a 1996 ENO Foundation Fellowship, a 1995 University of California Transportation Center Dissertation Grant, and a 1994 Chevron Foundation Fellowship. A native of Golden, Colorado, he graduated Cum Laude from Colorado Academy in 1986.

Most of his research projects are related to the transformation of energy systems to support motor vehicles and buildings, examining how both incremental and "leap frog" technologies can be applied to reduce greenhouse gas emissions and other negative environmental and social impacts of energy use. A central concept for his research is that the electrification of the transportation sector can realize synergy with a concentrated effort to reduce the carbon intensity of the electrical grid, yielding benefit for the electricity sector as well as the expanded use of electricity, hydrogen, and biofuels.